Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
2.
EBioMedicine ; 103: 105098, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608514

RESUMO

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).

3.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581001

RESUMO

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Assuntos
Imunidade , Neoplasias , Humanos , Imunoterapia , Imunomodulação , Neoplasias/terapia
4.
Br J Cancer ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454166

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC. METHODS: Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC. RESULTS: Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine. CONCLUSIONS: Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.

5.
Cancer Lett ; 588: 216769, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38438098

RESUMO

Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-ß expression in nearby tumor cells. Then, TGF-ß promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Hepáticas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Tumores Neuroendócrinos/patologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral
6.
Cancer Immunol Immunother ; 73(4): 61, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430267

RESUMO

BACKGROUND: Recent progressions in CAR-T cell therapy against pancreatic ductal adenocarcinoma (PDAC) remain disappointing, which are partially attributed to the immunosuppressive microenvironment including macrophage-mediated T cell repletion. METHODS: We first characterized the expression patterns of macrophage-relevant chemokines and identified CXCR2 as the key factor regulating T cell trafficking and tumor-specific accumulation in PDAC microenvironment. After that, we synthesized and introduced a CXCR2 expression cascade into Claudin18.2 CAR-T cells and compared the behaviors of CAR-T cells in vitro and in vivo. The therapeutic potential of CXCR2 CAR-T was evaluated in two different allogeneic models: subcutaneous allografts and metastatic PDAC models. RESULTS: The results showed that CXCR2 CAR-T not only reduced the size of allografted PDAC tumors, but also completely eliminated the formation of metastases. Lastly, we investigated the tumor tissues and found that expression of ectopic CXCR2 significantly improved tumor-targeted infiltration and residence of T cells and reduced the presence of MDSCs and CXCR2 + macrophages in PDAC microenvironment. CONCLUSION: Our studies suggested that ectopic CXCR2 played a significant and promising role in improving the efficiency of CAR-T therapy against primary and metastatic PDAC and partially reversed the immune-suppressive microenvironment.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/terapia , Progressão da Doença , Microambiente Tumoral
7.
Int J Biol Sci ; 20(5): 1833-1854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481814

RESUMO

The Warburg Effect is one of the most well-known cancer hallmarks. This metabolic pattern centered on lactate has extremely complex effects on various aspects of tumor microenvironment, including metabolic remodeling, immune suppression, cancer cell migration, and drug resistance development. Based on accumulating evidence, metabolites are likely to participate in the regulation of biological processes in the microenvironment and to form a feedback loop. Therefore, further revealing the key mechanism of lactate-mediated oncological effects is a reasonable scientific idea. The discovery and refinement of histone lactylation in recent years has laid a firm foundation for the above idea. Histone lactylation is a post-translational modification that occurs at lysine sites on histones. Specific enzymes, known as "writers" and "erasers", catalyze the addition or removal, respectively, of lactacyl group at target lysine sites. An increasing number of investigations have reported this modification as key to multiple cellular procedures. In this review, we discuss the close connection between histone lactylation and a series of biological processes in the tumor microenvironment, including tumorigenesis, immune infiltration, and energy metabolism. Finally, this review provides insightful perspectives, identifying promising avenues for further exploration and potential clinical application in this field of research.


Assuntos
Histonas , Neoplasias , Humanos , Epigênese Genética/genética , Lisina , Neoplasias/genética , Ácido Láctico , Microambiente Tumoral/genética
8.
Cancer Lett ; 588: 216741, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38395378

RESUMO

Characterization of tumor-responsive T cell receptors (TCRs) is a critical step in personalized TCR-T cell therapy, and remains challenging for pancreatic ductal adenocarcinoma (PDAC). Here we report a proof-of-concept study to identify and validate antitumor TCRs in two representative PDAC patients using ultradeep single-cell TCR/RNA sequencing and autologous organoids, and reveal the phenotypic dynamics of TCR repertoire in different T cell expansions from the same patient. We first performed comparative sequencing on freshly harvested peripheral blood mononuclear cells (PBMCs) and uncultured tumor infiltrating lymphocytes (TILs), followed by reactivity tests of TIL-enriched TCRs with autologous organoids, in which two tumor-responsive TCRs were successfully characterized and the corresponding TILs were mostly tissue-resident memory-like T cells, and partially expressed both naïve and exhausted T cell markers. For the PDAC patient without high-quality TILs, PBMCs were cultured with neoantigen peptide (KRASG12D), organoids, or anti-CD3 antibody in presence, and experienced extensive clonal expansions within ten days. All derived PBMCs were sequenced in parallel (>82,000 cells), and TCRs enriched in both peptide- and organoid-experienced, but not anti-CD3-treated CD8 T cells, were assessed for their reactivity to antigen-presenting cells (APCs) and organoids, in which three neoantigen-reactive TCRs were identified as tumor-responsive, and the corresponding T cells were characterized by mixed transcriptional signatures including but not limited to typical exhausted T cell markers. Together, our study revealed that the combination of ultradeep single-cell sequencing and organoid techniques enabled rapid characterization of tumor-responsive TCRs for developing practical personalized TCR-T therapy in an antigen/human leukocyte antigen (HLA)-agnostic manner.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos do Interstício Tumoral , Linfócitos T CD8-Positivos , Antígenos de Neoplasias/genética , Antígenos HLA , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Complexo CD3 , Antígenos de Histocompatibilidade Classe II , Peptídeos , Organoides
9.
Surgery ; 175(5): 1264-1275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302326

RESUMO

BACKGROUND: Although we have made progress in treatment and have increased the 5-year survival by ≤30% in pancreatic cancer, chemotherapy resistance remains a major obstacle. However, whether reprogrammed lipid metabolism contributes to chemoresistance still needs to be further studied. METHODS: Gene expression was determined using Western blotting and quantitative reverse transcription polymerase chain reaction. Cell cloning formation assay, Cell Counting Kit-8, EdU assay, wound healing assay, transwell assay, and flow cytometry were used to detect apoptosis, cell proliferation capacity, migration capacity, and cytotoxicity of gemcitabine. Confocal fluorescence microscopy, transmission electron microscopy, etc., were used to detect the changes in intracellular reactive oxygen species, glutathione, lipid peroxidation level, and cell morphology. An animal study was performed to evaluate the effect of CPT1B knockdown on tumor growth and gemcitabine efficacy. RESULTS: In our study, we observed that the CPT1B expression level was higher in pancreatic ductal adenocarcinoma tissues than in normal tissues and correlated with a low rate of survival. Moreover, silencing of CPT1B significantly suppressed the proliferative ability and metastasis of pancreatic cancer cells. Furthermore, we discovered that CPT1B interacts with Kelch-like ECH-associated protein 1, and CPT1B knockdown led to decreased NRF2 expression and ferroptosis induction. In addition, CPT1B expression increased after gemcitabine treatment, and it was highly expressed in gemcitabine-resistant pancreatic ductal adenocarcinoma cells. Finally, we discovered that ferroptosis induced by CPT1B knockdown enhanced the gemcitabine toxicity in pancreatic ductal adenocarcinoma. CONCLUSION: CPT1B may act as a promising target in treating patients with gemcitabine-resistant pancreatic ductal adenocarcinoma .


Assuntos
Carcinoma Ductal Pancreático , Carnitina O-Palmitoiltransferase , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , Animais , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Homeostase , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética
10.
Sci Adv ; 10(4): eadk6633, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277454

RESUMO

Hyperactivation of the oncogenic transcription reflects the epigenetic plasticity of the cancer cells. Su(var)3-9, enhancer of zeste, Trithorax (SET) was described as a nuclear factor that stimulated transcription from the chromatin template. However, the mechanisms of SET-dependent transcription are unknown. Here, we found that overexpression of SET and CDK9 induced very similar transcriptome signatures in multiple cancer cell lines. SET localized in the transcription start site (TSS)-proximal regions and supported the RNA transcription. SET specifically bound the PP2A-C subunit and induced PP2A-A subunit repulsion from the C subunit, which indicated the role of SET as a PP2A-A/C complex disruptor in the TSS-proximal regions. Through blocking PP2A activity, SET assisted CDK9 to maintain Pol II CTD phosphorylation and activated mRNA transcription. Our findings position SET as a key factor that modulates chromatin PP2A activity, promoting the oncogenic transcription in the pancreatic cancer.


Assuntos
Genes Essenciais , Neoplasias Pancreáticas , Humanos , Cromatina/genética , Neoplasias Pancreáticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 513-524, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229544

RESUMO

Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
12.
BMC Cancer ; 24(1): 87, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229038

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and its molecular mechanisms are unclear. Nucleolar and spindle-associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development of several types of tumors. The biological function and molecular mechanism of NUSAP1 in PDAC remain controversial. This study explored the effects and mechanism of NUSAP1 in PDAC. METHODS: Differentially expressed genes (DEGs) were screened. A protein‒protein interaction (PPI) network was constructed to identify hub genes. Experimental studies and tissue microarray (TMA) analysis were performed to investigate the effects of NUSAP1 in PDAC and explore its mechanism. RESULTS: Network analysis revealed that NUSAP1 is an essential hub gene in the PDAC transcriptome. Genome heterogeneity analysis revealed that NUSAP1 is related to tumor mutation burden (TMB), loss of heterozygosity (LOH) and homologous recombination deficiency (HRD) in PDAC. NUSAP1 is correlated with the levels of infiltrating immune cells, such as B cells and CD8 T cells. High NUSAP1 expression was found in PDAC tissues and was associated with a poor patient prognosis. NUSAP1 promoted cancer cell proliferation, migration and invasion, drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation. CONCLUSIONS: NUSAP1 is an essential hub gene that promotes PDAC progression and leads to a dismal prognosis by drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Fosforilação , Prognóstico
13.
World J Surg Oncol ; 22(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169384

RESUMO

BACKGROUND: There is no evidence supporting the feasibility of laparoscopic pancreaticoduodenectomy (LPD) compared to open pancreatoduodenectomy (OPD) following neoadjuvant chemotherapy (NACT) for pancreatic ductal adenocarcinoma (PDAC). METHODS: The clinical data of consecutive patients with borderline resectable PDAC who received NACT and underwent either LPD or OPD between January 2020 and December 2022 at Fudan University Shanghai Cancer Center was prospectively collected and retrospectively analyzed. RESULTS: The analysis included 57 patients in the OPD group and 20 in the LPD group. Following NACT, the LPD group exhibited a higher median CA19-9 decrease rate compared to the OPD group (85.3% vs. 66.9%, P = 0.042). Furthermore, 3 anatomically borderline PDACs in the LPD group and 5 in the OPD group were downstaged into resectable status (30.0% vs. 12.3%, P = 0.069). According to RECIST criteria, 51 (66.2%) patients in the entire cohort were evaluated as having stable disease. The median operation time for the LPD group was longer than the OPD group (419 vs. 325 min, P < 0.001), while the venous resection rate was 35.0% vs. 43.9%, respectively (P = 0.489). There was no difference in the number of retrieved lymph nodes, with a median number of 18.5 in the LPD group and 22 in the OPD group, and the R1 margin rate (15.0% vs. 12.3%) was also comparable. The incidence of Clavien-Dindo complications (35.0% vs. 66.7%, P = 0.018) was lower in the LPD group compared to the OPD group. Multivariable regression analysis revealed that a tumor diameter > 3 cm before NACT (HR 2.185) and poor tumor differentiation (HR 1.805) were independent risk factors for recurrence-free survival, and a decrease rate of CA19-9 > 70% (OR 0.309) was a protective factor for early tumor recurrence and overall survival. CONCLUSIONS: LPD for PDAC following NACT is feasible and oncologically equivalent to OPD. Effective control of CA19-9 levels is beneficial in reducing early tumor recurrence and improving overall survival.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Laparoscopia , Neoplasias Pancreáticas , Humanos , Pancreaticoduodenectomia/efeitos adversos , Estudos Retrospectivos , Terapia Neoadjuvante/efeitos adversos , Recidiva Local de Neoplasia/etiologia , Estudos de Viabilidade , Antígeno CA-19-9 , China , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/cirurgia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Tempo de Internação
14.
Mol Carcinog ; 63(2): 195-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846815

RESUMO

N-myc and STAT interactor (NMI) has been reported to interact with several transcription factors, including STATs family, c-Myc, N-Myc, and BRCA1, to indirectly affect transcription events and participate in multiple cellular processes. However, its function in pancreatic ductal adenocarcinoma (PDAC) has seldom been studied. In this study, we investigated the regulation of NMI on PDAC progression and uncovered the underlying molecular mechanisms. We found that NMI expression was significantly upregulated in PDAC and high NMI expression was related to a worse patient survival. Cell proliferation and migration assay, including cell viability, transwell assay, wound healing, and subcutaneous mouse model were utilized to confirm the function of NMI in PDAC progression. Downregulation of NMI abrogates tumor progression of PDAC both in vitro and in vivo. RNA sequencing was utilized to identify the downstream molecules of NMI and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) was confirmed to be regulated by NMI in both mRNA and protein level. The binding function of NMI to STAT3 was essential in regulating the IFIT3 expression. Moreover, the NMI/STAT3-IFIT3 axis was identified to markedly facilitate the gemcitabine resistance in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Gencitabina , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
16.
Ann Surg ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050737

RESUMO

OBJECTIVE: To examine the characteristics of pancreatic cancer patients with long-term survival. BACKGROUND: Although pancreatic cancer is a highly lethal malignancy, a minority of patients experience long-term survival. The characteristics of these patients remain largely unidentified. METHODS: An indolent subgroup was established using carbohydrate antigen 19-9 (CA19-9), which is the best-validated biomarker for pancreatic cancer. Of 1558 patients, 13.9% were included in the CA19-9-normal (≤ 37 U/mL) subgroup. RESULTS: A normal A19-9 level was an independent variable for overall survival (median survival, 18.1 vs. 9.7 months, hazard ratio = 0.53, P < 0.001). The 5-year survival of patients with stage IV CA19-9-normal cancer was higher than that of patients with stage I-IV CA19-9-high cancer (22.4% vs. 6.8%, P = 0.034). The CA19-9-normal subgroup exhibited reduced levels of circulating glucose (P < 0.001) and increased expression of insulin (P < 0.001) compared with the CA19-9-high subgroup. Glucose was a substrate for CA19-9 biosynthesis through the hexosamine biosynthesis pathway. In addition, in pancreatic cancer animal models of diabetes, glucose control decreased CA19-9 levels and improved overall survival. In a clinical trial (NCT05306028) of patients before undergoing major anticancer treatments, glucose control decreased CA19-9 levels in 90.9% of the patients. CONCLUSIONS: CA19-9-normal pancreatic cancer is a strikingly indolent subgroup with low glucose and high insulin. Glucose control is a promising therapeutic strategy for pancreatic cancer.

17.
Acta Pharmacol Sin ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057506

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor ß (TGF-ß) pathway, which affects the TGF-ß-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor ß1 (TGF-ß1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-ß1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.

18.
EClinicalMedicine ; 65: 102269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38106556

RESUMO

Background: Lymph node status is an important factor for the patients with non-functional pancreatic neuroendocrine tumors (NF-PanNETs) with respect to the surgical methods, prognosis, recurrence. Our aim is to develop and validate a combination model based on contrast-enhanced CT images to predict the lymph node metastasis (LNM) in NF-PanNETs. Methods: Retrospective data were gathered for 320 patients with NF-PanNETs who underwent curative pancreatic resection and CT imaging at two institutions (Center 1, n = 236 and Center 2, n = 84) between January 2010 and March 2022. RDPs (Radiomics deep learning signature) were developed based on ten machine-learning techniques. These signatures were integrated with the clinicopathological factors into a nomogram for clinical applications. The evaluation of the model's performance was conducted through the metrics of the area under the curve (AUC). Findings: The RDPs showed excellent performance in both centers with a high AUC for predicting LNM and disease-free survival (DFS) in Center 1 (AUC, 0.88; 95% CI: 0.84-0.92; DFS, p < 0.05) and Center 2 (AUC, 0.91; 95% CI: 0.85-0.97; DFS, p < 0.05). The clinical factors of vascular invasion, perineural invasion, and tumor grade were associated with LNM (p < 0.05). The combination nomogram showed better prediction capability for LNM (AUC, 0.93; 95% CI: 0.89-0.96). Notably, our model maintained a satisfactory predictive ability for tumors at the 2-cm threshold, demonstrating its effectiveness across different tumor sizes in Center 1 (≤2 cm: AUC, 0.90 and >2 cm: AUC, 0.86) and Center 2 (≤2 cm: AUC, 0.93 and >2 cm: AUC, 0.91). Interpretation: Our RDPs may have the potential to preoperatively predict LNM in NF-PanNETs, address the insufficiency of clinical guidelines concerning the 2-cm threshold for tumor lymph node dissection, and provide precise therapeutic strategies. Funding: This work was supported by JSPS KAKENHI Grant Number JP22K20814; the Rare Tumor Research Special Project of the National Natural Science Foundation of China (82141104) and Clinical Research Special Project of Shanghai Municipal Health Commission (202340123).

19.
Heliyon ; 9(11): e21917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027678

RESUMO

Background: Tumors involving the main pancreatic duct (MPD) used to be a contraindication for enucleation. Methods: Clinical data of consecutive patients with pancreatic tumors who received laparoscopic or robotic enucleation (LEN or REN) between January 2019 and December 2021 at Fudan University Shanghai Cancer Center were analyzed. Results: Ninety-six patients were included in the analysis, with 55 in the LEN group and 41 in the REN group, and no conversion to laparotomy. Most tumors were located in the head of pancreas (71.9 %). The tumor diameter (3.1 vs. 1.9 cm) was larger, and more cystic tumors (92.7 % vs. 56.4 %) and more tumors involving the MPD (34.1 % vs. 3.6 %) were observed in the REN group. MPD support tube insertion was performed in 15 cases, with 11 in the REN group and 4 in the LEN group. The incidence of biochemical and grade B postoperative pancreatic fistula (POPF) was both 46.9 %, and no grade C POPF occurred. Among the 45 patients with grade B POPF, 28 cases (62.2 %) were due to carrying drainage tube >3 weeks without additional treatment, and only 4 cases required invasive treatment. For patients with MPD support tube implantation (n = 15), support tube fall-offs were observed in 12 cases, 2 patients had MPD dilatation, and no MPD stricture, stone formation or pancreatic atrophy was observed during follow-up. Conclusions: The incidence of POPF was high but still controllable without serious complications after minimally invasive enucleation. The MPD is no longer a restricted area, and the robotic system has advantages in handling complex enucleations.

20.
Cell Death Dis ; 14(11): 778, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012214

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...